Coherent excitation of many bodies in the van der Waals NiPS 3 antiferromagnet


  • one)

    Frenkel, J. On the transformation of light into heat in solids. ME. Phys. Rdo. 37, 17–44 (1931).

    ADS CAS Article Google Scholar

  • two)

    Lozovik, Yu. E. and Yudson, VI Viability of electron superfluidity and spatially paired holes; A new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

    ADS Google Scholar

  • 3)

    Nandi, D., Finck, ADK, Eisenstein, JP, Pfeiffer, LN & West, KW Exciton condensation and Coulomb perfect drag. Nature 488, 481–484 (2012).

    ADS CAS Article Google Scholar

  • 4)

    Butov, LV, Gossard, AC and Chemla, DS Macroscopically ordered state in an exciton system. Nature 418, 751-754 (2002).

    ADS CAS Article Google Scholar

  • 5)

    Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. and West, K. Long-range transport in dark excitonic states in coupled quantum wells. Nature 418, 754-757 (2002).

    ADS CAS Article Google Scholar

  • 6)

    Wang, K. et al. Electrical control of carriers and excitons charged in atomically thin materials. Nat. Nanotechnology. 13, 128-132 (2018).

    ADS CAS Article Google Scholar

  • 7)

    Eisenstein, JP Excitation condensation in Hall bilayer quantum systems. Annu Rev. Condens. Physical matter. 5 5, 159-181 (2014).

    ADS CAS Article Google Scholar

  • 8)

    Eisenstein, JP and Macdonald, AH Bose – Einstein exciton condensation in electron bilayer systems. Nature 432, 691-694 (2004).

    ADS CAS Article Google Scholar

  • 9)

    Unuchek, D. et al. Room temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560340–344 (2018).

    ADS CAS Article Google Scholar

  • 10)

    Zhang, FC & Rice, TM Hamiltonian effective for superconducting Cu oxides. Phys. Rev. B 37, 3759 (R) (1988).

    ADS article Google Scholar

  • eleven)

    Khomskii, DI Transition metal compounds (Cambridge Univ. Press, 2014).

  • 12)

    Friemel, G. et al. Resonant Magnetic Excitation Mode in CeB Heavy Fermion Antiferromagnet6 6. Nat. Commun. 3, 830 (2012).

    ADS CAS Article Google Scholar

  • 13)

    Park, J.-G. Opportunities and challenges of 2D van der Waals magnetic materials: magnetic graphene? J. Phys. Condens. to import 28, 301001 (2016).

    Google Scholar Article

  • 14)

    Burch, KS, Mandrus, D. and Park, J.-G. Magnetism in two-dimensional materials by van der Waals. Nature 563, 47-52 (2018).

    ADS CAS Article Google Scholar

  • fifteen.

    Brec, R. Review of the structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid state ion. 22, 3–30 (1986).

    CAS Article Google Scholar

  • sixteen.

    Joy, PA and Vasudevan, S. Magnetism in MPS Layered Transition Metal Thiophosphates3 (M = Mn, Fe and Ni). Phys. Rev. B 465425-5433 (1992).

    ADS CAS Article Google Scholar

  • 17)

    Wildes, AR et al. Magnetic structure of quasi-two-dimensional antiseptic NiPS3. Phys. Rev. B 92224408 (2015).

    ADS article Google Scholar

  • 18)

    Kuo, C.-T. et al. Low Layer NiPS Raman Spectroscopic Exfoliation and Fingerprint3 van der Waals crystals. Sci. Reps. 6 6, 20904 (2016).

    ADS CAS Article Google Scholar

  • 19)

    Lee, J.-U. et al. Magnetic sorting ising type in atomically thin FePS3. Nano Lett. sixteen, 7433-7438 (2016).

    ADS CAS Article Google Scholar

  • twenty)

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546265–269 (2017).

    ADS CAS Article Google Scholar

  • twenty-one)

    Huang, B. et al. Layer dependent ferromagnetism in a van der Waals crystal up to the monolayer limit. Nature 546, 270–273 (2017).

    ADS CAS Article Google Scholar

  • 22)

    Fei, Z. et al. Two-dimensional metal ferroelectric switching. Nat. Mater. 560336–339 ​​(2018).

    CAS Google Scholar

  • 2. 3)

    Kim, SY et al. Load-gyro correlation in van der Waals Niifer antiferromagnet3. Phys. Rev. Lett. 120136402 (2018).

    ADS CAS Article Google Scholar

  • 24)

    Kim, K. et al. Suppression of the magnetic order in the antiferromagnetic monolayer of type XXZ NiPS3. Nat. Commun. 10345 (2019).

    ADS article Google Scholar

  • 25)

    Susner, MA, Chyasnavichyus, M., McGuire, MA, Ganesh, P. and Maksymovych, P. Metal thio- and selenophosphates as multi-functional layered materials from van der Waals. Adv. Mater. 291602852 (2017).

    Google Scholar Article

  • 26)

    Bernasconi, M. et al. Layered MPX lattice dynamics. Phys. Rev. B 38, 12089-12099 (1988).

    ADS CAS Article Google Scholar

  • 27)

    Monney, C. et al. Determination of short range twist correlations in the twist chain LitwoCuOtwo and cuGeO3 compounds that use resonant inelastic X-ray scattering. Phys. Rev. Lett. 110, 087403 (2013).

    ADS article Google Scholar

  • 28)

    Collart, E. et al. Localized and delocalized excitons: inelastic resonant X-ray scattering in Latwo-XMrXNiO4 4 and the2−XMrXCuO4 4. Phys. Rev. Lett. 96157004 (2006).

    ADS CAS Article Google Scholar

  • 29)

    Vehse, WE, Lee, KH, Yun, SI and Sibley, WA Ni2+ emission in MgO, KMgF3, KZnF3and MgFtwo. J. Lumin. 10149-162 (1975).

    CAS Article Google Scholar

  • 30)

    Joy, PA & Vasudevan, S. Optical Absorption Spectra for MPS Layered Transition Metal Thiophosphates3 (M = Mn, Fe and Ni). Phys. Rev. B 46, 5134-5141 (1992).

    ADS CAS Article Google Scholar

  • 31)

    Kozielski, M., Pollini, I. and Spinolo, G. Electric absorption spectra of Ni2+ in NiCltwo and NiBrtwo (Phonon and magnon lateral bands). J. Phys. C 5 5, 1253-1264 (1972).

    ADS CAS Article Google Scholar

  • 32)

    Lane, C. and Zhu, J.-X. Dependence of the thickness of the electronic structure and optical properties of a van der Waals correlated antiferromagnetic NiPS3 thin film. Preprint at https://arXiv.org/abs/2003.01614 (2020).

  • 33)

    de Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem Rdo. 249, 31-63 (2005).