MacColl, LA Note on the transmission and reflection of wave packets by possible barriers. Phys. Rdo. 40, 621-626 (1932).
Wigner, EP Lower limit for the energy derivative of the dispersion phase change. Phys. Rdo. 98145-147 (1955).
Ranfagni, A., Mugnai, D., Fabeni, P. and Pazzi, GP Delay time measurements in narrow waveguides as a tunnel test. Appl. Latvian phys.. 58, 774-776 (1991).
Enders, A. and Nimtz, G. On the crossing of the superluminal barrier. J. Phys. I two, 1693-1698 (1992).
Academic google
Steinberg, AM, Kwiat, PG and Chiao, RY Single photon tunneling time measurement. Phys. Rev. Lett. 71708–711 (1993).
Spielmann, C., Szipöcs, R., Stingl, A. and Krausz, F. Tunnel of optical pulses through photonic band spaces. Phys. Rev. Lett. 73, 2308–2311 (1994).
Sainadh, US et al. Attosecond time of angular scratching and tunneling in atomic hydrogen. Nature 568, 75-77 (2019).
Hauge, EH and Støvneng, JA Tunneling times: a critical review. Rev. Mod. Phys. 61, 917–936 (1989).
Landauer, R. and Martin, T. Tunnel barrier interaction time. Rev. Mod. Phys. 66, 217–228 (1994).
Chiao, RY and Steinberg, AM in Progress in optics Vol. 37 (ed. Wolf, E.) 345–405 (Elsevier, 1997).
Steinberg, AM How long does a tunnel particle spend in the barrier region? Phys. Rev. Lett. 74, 2405-2409 (1995).
Steinberg, AM Conditional Probabilities in Quantum Theory and the Tunnel Time Controversy. Phys. Rev. A 52, 32-42 (1995).
Aharonov, Y. & Vaidman, L. How the result of a measurement of a spin component of a spin-½ particle can be 100. Phys. Rev. Lett. 60 60, 1351-1354 (1988).
Büttiker, M. and Landauer, R. Travel time for tunneling. Phys. Rev. Lett. 49, 1739-1742 (1982).
Büttiker, the precession of M. Larmor and the transverse time for the construction of tunnels. Phys. Rev. B 27, 6178-6188 (1983).
Hartman, TE Tunnels of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962).
Deutsch, M. & Golub, J. Larmor optical clock: measurement of photonic tunnel time. Phys. Rev. A 53, 434-439 (1996).
Balcou, P. and Dutriaux, L. Double optical tunneling times in a frustrated total internal reflection. Phys. Rev. Lett. 78, 851–854 (1997).
Hino, M. et al. Measurement of Larmor precession angles of tunnel neutrons. Phys. Rev. A 59, 2261–2268 (1999).
Esteve, D. et al. Observation of the effect of temporal decoupling in the macroscopic quantum tunnel of a Josephson junction. In Proc. Ninth Gen. Conf. Condensed Matter Division of the European Physical Society (eds Friedel, J. et al.) 121-124 (1989).
Eckle, P. et al. Angular atosecond stripes. Nat. Phys. 4 4565-570 (2008).
Eckle, P. et al. Measurement of attosecond ionization delay time and tunneling in helium. Science 322, 1525-1529 (2008).
Pfeiffer, AN, Cirelli, C., Smolarski, M. and Keller, U. Recent measurements of strong field ionization attoclock. Chem Phys. 41484-91 (2013).
Landsman, AS et al. Ultra-fast resolution of the tunneling delay time. Optics one, 343–349 (2014).
Camus, N. et al. Experimental evidence for quantum tunnel time. Phys. Rev. Lett. 119, 023201 (2017).
Zimmermann, T., Mishra, S., Doran, BR, Gordon, DF and Landsman, AS Tunnel time and weak measurement in strong field ionization. Phys. Rev. Lett. 116233603 (2016).
Klaiber, M., Hatsagortsyan, KZ and Keitel, CH Recollections under the tunnel barrier in strong field ionization. Phys. Rev. Lett. 120, 013201 (2018).
Torlina, L. et al. Interpretation of attoclock measurements of tunneling times Nat. Phys. eleven, 503–508 (2015).
Landauer, R. Travel time of the barrier. Nature 341567-568 (1989).
Fortun, A. et al. Direct measurement of the tunneling delay time in an optical network. Phys. Rev. Lett. 117, 010401 (2016).
Baz ‘, AI Useful life of intermediate states. Sov. J. Nucl. Phys. 4 4, 182-188 (1966).
Academic google
Rybachenko, VF Penetration time of a particle through a potential barrier. Sov. J. Nucl. Phys. 5 5, 635-639 (1967).
Academic google
Pollak, E. and Miller, WH New physical interpretation of time in dispersion theory. Phys. Rev. Lett. 53115-118 (1984).
Sokolovski, D. & Baskin, LM Travel time in quantum dispersion. Phys. Rev. A 36, 4604-4611 (1987).
Potnis, S., Ramos, R., Maeda, K., Carr, LD and Steinberg, AM Quantum tunnel assisted by interaction of a Bose-Einstein condensate from a single capture well. Phys. Rev. Lett. 118, 060402 (2017).
Zhao, X. et al. Macroscopic Bose-Einstein Quantum Condensate Tunnel Exhaust. Phys. Rev. A 96, 063601 (2017).
Ramos, R., Spierings, D., Potnis, S. and Steinberg, AM Atom Optical Knife Edge: Measurement of Narrow Moment Distributions Phys. Rev. A 98, 023611 (2018).
Chu, S., Bjorkholm, JE, Ashkin, A., Gordon, JP, and Hollberg, LW Proposal for optically cooling atoms to temperatures on the order of 10−6 K. To opt. Latvian. eleven73-75 (1986).
Ammann, H. & Christensen, N. Delta-kick cooling: a new method to cool atoms. Phys. Rev. Lett. 78, 2088-2091 (1997).
Morinaga, M., Bouchoule, I., Karam, J.-C. & Salomon, C. Manipulation of quantum states of motion of neutral atoms. Phys. Rev. Lett. 83, 4037-4040 (1999).
Maréchal, E. et al. Longitudinal approach of an atomic cloud using pulsed magnetic forces. Phys. Rev. A 59, 4636-4640 (1999).
Myrskog, SH, Fox, JK, Moon, HS, Kim, JB and Steinberg, AM “Delta-kick cooling” modified by magnetic field gradients. Phys. Rev. A 61053412 (2000).
Le Kien, F., Schneeweiss, P. and Rauschenbeutel, A. Dynamic polarization of atoms in arbitrary light fields: general theory and application to cesium. EUR. Phys. J. D 6792 (2013).
Leavens, CR & Aers, GC Extension to the arbitrary barrier of the interaction times of the characteristic Büttiker – Landauer barrier. Solid state community. 63, 1101-1105 (1987).
Cohen-Tannoudji, C., Diu, B. and Laloë, F. Quantum mechanics (Wiley, 1977).
Sánchez-Soto, LL, Monzón, JJ, Barriuso, AG and Cariñena, JF The transfer matrix: a geometric perspective. Phys. Reps. 513, 191–227 (2013).
Bao, W. and Cai, Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Relat kinetic Models 6 6, 1–135 (2012).
Wang, H. A spectral method that divides time to calculate the dynamics of the spinor. F = 1 Bose-Einstein condensates. In t. J. Comput. Maths. 84925-944 (2007).
Bao, W. Fundamental states and dynamics of multi-component Bose-Einstein condensates. Multiscale model. Sim. two, 210-236 (2004).