Measurement of the time a tunnel atom spends within the barrier region


  • one)

    MacColl, LA Note on the transmission and reflection of wave packets by possible barriers. Phys. Rdo. 40, 621-626 (1932).

    MATHEMATICAL ADS Google Scholar

  • two)

    Wigner, EP Lower limit for the energy derivative of the dispersion phase change. Phys. Rdo. 98145-147 (1955).

    ADS MathSciNet CAS MATH Google Scholar

  • 3)

    Ranfagni, A., Mugnai, D., Fabeni, P. and Pazzi, GP Delay time measurements in narrow waveguides as a tunnel test. Appl. Latvian phys.. 58, 774-776 (1991).

    ADS CAS Google Scholar

  • 4)

    Enders, A. and Nimtz, G. On the crossing of the superluminal barrier. J. Phys. I two, 1693-1698 (1992).

    Academic google

  • 5)

    Steinberg, AM, Kwiat, PG and Chiao, RY Single photon tunneling time measurement. Phys. Rev. Lett. 71708–711 (1993).

    ADS CAS PubMed PubMed Central Google Scholar

  • 6)

    Spielmann, C., Szipöcs, R., Stingl, A. and Krausz, F. Tunnel of optical pulses through photonic band spaces. Phys. Rev. Lett. 73, 2308–2311 (1994).

    ADS CAS PubMed PubMed Central Google Scholar

  • 7)

    Sainadh, US et al. Attosecond time of angular scratching and tunneling in atomic hydrogen. Nature 568, 75-77 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • 8)

    Hauge, EH and Støvneng, JA Tunneling times: a critical review. Rev. Mod. Phys. 61, 917–936 (1989).

    ADS Google Scholar

  • 9)

    Landauer, R. and Martin, T. Tunnel barrier interaction time. Rev. Mod. Phys. 66, 217–228 (1994).

    ADS Google Scholar

  • 10)

    Chiao, RY and Steinberg, AM in Progress in optics Vol. 37 (ed. Wolf, E.) 345–405 (Elsevier, 1997).

  • eleven)

    Steinberg, AM How long does a tunnel particle spend in the barrier region? Phys. Rev. Lett. 74, 2405-2409 (1995).

    ADS CAS Google Scholar

  • 12)

    Steinberg, AM Conditional Probabilities in Quantum Theory and the Tunnel Time Controversy. Phys. Rev. A 52, 32-42 (1995).

    ADS MathSciNet CAS Google Scholar

  • 13)

    Aharonov, Y. & Vaidman, L. How the result of a measurement of a spin component of a spin-½ particle can be 100. Phys. Rev. Lett. 60 60, 1351-1354 (1988).

    ADS CAS Google Scholar

  • 14)

    Büttiker, M. and Landauer, R. Travel time for tunneling. Phys. Rev. Lett. 49, 1739-1742 (1982).

    ADS Google Scholar

  • fifteen.

    Büttiker, the precession of M. Larmor and the transverse time for the construction of tunnels. Phys. Rev. B 27, 6178-6188 (1983).

    ADS Google Scholar

  • sixteen.

    Hartman, TE Tunnels of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962).

    ADS Google Scholar

  • 17)

    Deutsch, M. & Golub, J. Larmor optical clock: measurement of photonic tunnel time. Phys. Rev. A 53, 434-439 (1996).

    ADS CAS Google Scholar

  • 18)

    Balcou, P. and Dutriaux, L. Double optical tunneling times in a frustrated total internal reflection. Phys. Rev. Lett. 78, 851–854 (1997).

    ADS CAS Google Scholar

  • 19)

    Hino, M. et al. Measurement of Larmor precession angles of tunnel neutrons. Phys. Rev. A 59, 2261–2268 (1999).

    ADS CAS Google Scholar

  • twenty)

    Esteve, D. et al. Observation of the effect of temporal decoupling in the macroscopic quantum tunnel of a Josephson junction. In Proc. Ninth Gen. Conf. Condensed Matter Division of the European Physical Society (eds Friedel, J. et al.) 121-124 (1989).

  • twenty-one)

    Eckle, P. et al. Angular atosecond stripes. Nat. Phys. 4 4565-570 (2008).

    CAS Google Scholar

  • 22)

    Eckle, P. et al. Measurement of attosecond ionization delay time and tunneling in helium. Science 322, 1525-1529 (2008).

    ADS CAS PubMed PubMed Central Google Scholar

  • 2. 3)

    Pfeiffer, AN, Cirelli, C., Smolarski, M. and Keller, U. Recent measurements of strong field ionization attoclock. Chem Phys. 41484-91 (2013).

    CAS Google Scholar

  • 24)

    Landsman, AS et al. Ultra-fast resolution of the tunneling delay time. Optics one, 343–349 (2014).

    ADS CAS Google Scholar

  • 25)

    Camus, N. et al. Experimental evidence for quantum tunnel time. Phys. Rev. Lett. 119, 023201 (2017).

    ADS PubMed PubMed Central Google Scholar

  • 26)

    Zimmermann, T., Mishra, S., Doran, BR, Gordon, DF and Landsman, AS Tunnel time and weak measurement in strong field ionization. Phys. Rev. Lett. 116233603 (2016).

    ADS PubMed PubMed Central Google Scholar

  • 27)

    Klaiber, M., Hatsagortsyan, KZ and Keitel, CH Recollections under the tunnel barrier in strong field ionization. Phys. Rev. Lett. 120, 013201 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • 28)

    Torlina, L. et al. Interpretation of attoclock measurements of tunneling times Nat. Phys. eleven, 503–508 (2015).

    CAS Google Scholar

  • 29)

    Landauer, R. Travel time of the barrier. Nature 341567-568 (1989).

    ADS Google Scholar

  • 30)

    Fortun, A. et al. Direct measurement of the tunneling delay time in an optical network. Phys. Rev. Lett. 117, 010401 (2016).

    ADS CAS Google Scholar

  • 31)

    Baz ‘, AI Useful life of intermediate states. Sov. J. Nucl. Phys. 4 4, 182-188 (1966).

    Academic google

  • 32)

    Rybachenko, VF Penetration time of a particle through a potential barrier. Sov. J. Nucl. Phys. 5 5, 635-639 (1967).

    Academic google

  • 33)

    Pollak, E. and Miller, WH New physical interpretation of time in dispersion theory. Phys. Rev. Lett. 53115-118 (1984).

    ADS CAS Google Scholar

  • 3. 4)

    Sokolovski, D. & Baskin, LM Travel time in quantum dispersion. Phys. Rev. A 36, 4604-4611 (1987).

    ADS CAS Google Scholar

  • 35)

    Potnis, S., Ramos, R., Maeda, K., Carr, LD and Steinberg, AM Quantum tunnel assisted by interaction of a Bose-Einstein condensate from a single capture well. Phys. Rev. Lett. 118, 060402 (2017).

    ADS Google Scholar

  • 36)

    Zhao, X. et al. Macroscopic Bose-Einstein Quantum Condensate Tunnel Exhaust. Phys. Rev. A 96, 063601 (2017).

    ADS Google Scholar

  • 37)

    Ramos, R., Spierings, D., Potnis, S. and Steinberg, AM Atom Optical Knife Edge: Measurement of Narrow Moment Distributions Phys. Rev. A 98, 023611 (2018).

    ADS CAS Google Scholar

  • 38)

    Chu, S., Bjorkholm, JE, Ashkin, A., Gordon, JP, and Hollberg, LW Proposal for optically cooling atoms to temperatures on the order of 10−6 K. To opt. Latvian. eleven73-75 (1986).

    ADS CAS Google Scholar

  • 39)

    Ammann, H. & Christensen, N. Delta-kick cooling: a new method to cool atoms. Phys. Rev. Lett. 78, 2088-2091 (1997).

    ADS CAS Google Scholar

  • 40)

    Morinaga, M., Bouchoule, I., Karam, J.-C. & Salomon, C. Manipulation of quantum states of motion of neutral atoms. Phys. Rev. Lett. 83, 4037-4040 (1999).

    ADS CAS Google Scholar

  • 41)

    Maréchal, E. et al. Longitudinal approach of an atomic cloud using pulsed magnetic forces. Phys. Rev. A 59, 4636-4640 (1999).

    ADS Google Scholar

  • 42)

    Myrskog, SH, Fox, JK, Moon, HS, Kim, JB and Steinberg, AM “Delta-kick cooling” modified by magnetic field gradients. Phys. Rev. A 61053412 (2000).

    ADS Google Scholar

  • 43)

    Le Kien, F., Schneeweiss, P. and Rauschenbeutel, A. Dynamic polarization of atoms in arbitrary light fields: general theory and application to cesium. EUR. Phys. J. D 6792 (2013).

    ADS Google Scholar

  • 44)

    Leavens, CR & Aers, GC Extension to the arbitrary barrier of the interaction times of the characteristic Büttiker – Landauer barrier. Solid state community. 63, 1101-1105 (1987).

    ADS Google Scholar

  • Four. Five)

    Cohen-Tannoudji, C., Diu, B. and Laloë, F. Quantum mechanics (Wiley, 1977).

  • 46)

    Sánchez-Soto, LL, Monzón, JJ, Barriuso, AG and Cariñena, JF The transfer matrix: a geometric perspective. Phys. Reps. 513, 191–227 (2013).

    ADS MathSciNet Google Scholar

  • 47)

    Bao, W. and Cai, Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Relat kinetic Models 6 6, 1–135 (2012).

    MathSciNet MATH Google Scholar

  • 48)

    Wang, H. A spectral method that divides time to calculate the dynamics of the spinor. F = 1 Bose-Einstein condensates. In t. J. Comput. Maths. 84925-944 (2007).

    MathSciNet MATH Google Scholar

  • 49)

    Bao, W. Fundamental states and dynamics of multi-component Bose-Einstein condensates. Multiscale model. Sim. two, 210-236 (2004).

    MATHEMATICS Google Scholar