Impact of ionizing radiation on superconducting qubit coherence


  • 1.

    DiVincenzo, D. The Physical Implementation of Quantum Calculation. Fortschr. Phys. 48, 771–783 (2000).

    MATH Google Scholar

  • 2.

    Arute, F. et al. Quantum supremacy with a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • 3.

    Kandala, A. et al. Error magnification expands the accessibility of a noisy quantum processor. Nature 567, 491–495 (2019).

    ADS CAS Google Scholar

  • 4.

    Lutchyn, R., Glazman, L. & Larkin, A. Kinetics of the superconducting charge qubit in the presence of a quasi-particle. Phys. Rev. B 74, 064515 (2006).

    ADS Google Scholar

  • 5.

    Martinis, JM, Ansmann, M. & Aumentado, J. Energy decay in superconducting Josephson node qubits of nonequilibrium quasiparticle excitations. Phys. Pastor Lett. 103, 097002 (2009).

    ADS Google Scholar

  • 6.

    Jin, X. et al. Thermal and residual population of excited state in a 3D transmon qubit. Phys. Pastor Lett. 114, 240501 (2015).

    ADS CAS Google Scholar

  • 7.

    Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Pastor Lett. 121, 157701 (2018).

    ADS CAS Google Scholar

  • 8.

    Aumentado, J., Keller, MW, Martinis, JM & Devoret, MH Nonequilibrium quasiparticles in 2e periodicity in transistors with some Cooper pairs. Phys. Pastor Lett. 92, 066802 (2004).

    ADS CAS Google Scholar

  • 9.

    Taupin, M., Khaymovich, I., Meschke, M., Mel’nikov, A. & Pekola, J. Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors. Nat. Commun. 7, 10977 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • 10.

    Serniak, K. et al. Direct dispersive control of charge parity in offset charge-sensitive transmons. Phys. Rev. Appl. 12, 014052 (2019).

    ADS CAS Google Scholar

  • 11.

    Córcoles, AD et al. Superconductive qubits protect against radiation. Appl. Phys. Easy. 99, 181906 (2011).

    ADS Google Scholar

  • 12.

    Barends, R. et al. Minimize quasiparticle generation of stray infrared light in superconducting quantum circuitry. Appl. Phys. Easy. 99, 113507 (2011).

    ADS Google Scholar

  • 13.

    Bespalov, A., Houzet, M., Meyer, JS & Nazarov, YV Theoretical model to explain excess quasi-particles in superconductors. Phys. Pastor Lett. 117, 117002 (2016).

    ADS Google Scholar

  • 14.

    Nakamura, Y., Pashkin, YA & Tsai, JS Coherent control of macroscopic quantum states in a box of one Cooper pair. Nature 398, 786-788 (1999).

    ADS CAS Google Scholar

  • 15.

    Oliver, WD & Welander, PB Material in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).

    CAS Google Scholar

  • 16.

    Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Pastor Condens. Matter Phys. 11, 369-395 (2020).

    Google Scholar

  • 17.

    Gottesman, D. Theory of fall-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    ADS CAS Google Scholar

  • 18.

    Grünhaupt, L. et al. Loss mechanisms and quasi-particle dynamics in superconducting microwave resonators made of thin film granular aluminum. Phys. Pastor Lett. 121, 117001 (2018).

    ADS Google Scholar

  • 19.

    Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep underground facility Preprint at https://arXiv.org/abs/2005.02286 (2020).

  • 20.

    Day, PK, LeDuc, HG, Mazin, BA, Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    ADS CAS Google Scholar

  • 21.

    Irwin, KD, Hilton, GC, Wollman, DA & Martinis, JM X-ray detection with a superconducting microcalorimeter for transition sensor with electrothermal feedback. Appl. Phys. Easy. 69, 1945–1947 (1996).

    ADS CAS Google Scholar

  • 22.

    Moore, DC et al. Position and energy-resolved particle detection with phonon-mediated microwave kinetic inductance detectors. Appl. Phys. Easy. 100, 232601 (2012).

  • 23.

    Albrecht, S. et al. Transport signatures of quasi-particle poisoning on an island of Majorana. Phys. Pastor Lett. 118, 137701 (2017).

    ADS CAS Google Scholar

  • 24.

    Koch, J. et al. Load insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS Google Scholar

  • 25.

    Krantz, P. et al. A manual for quantum engineers for superconducting qubits. Appl. Phys. Rev.. 6, 021318 (2019).

    ADS Google Scholar

  • 26.

    Klimov, P. et al. Fluctuations of energy relaxation times in superconducting qubits. Phys. Pastor Lett. 121, 090502 (2018).

    ADS CAS Google Scholar

  • 27.

    Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).

    ADS CAS Google Scholar

  • 28.

    Kozorezov, A. et al. Quasiparticle phonon downconversion in non-balanced superconductors. Phys. Rev. B 61, 11807 (2000).

    ADS CAS Google Scholar

  • 29.

    Kozorezov, A., Wigmore, J., Martin, D., Verhoeve, P. & Peacock, A. Electron energy down-conversion in thin superconducting films. Phys. Rev. B 75, 094513 (2007).

    ADS Google Scholar

  • 30.

    Allison, J. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270-278 (2006).

    ADS Google Scholar

  • 31.

    Agostinelli, S. et al. Geant4-a simulation toolkit. Nucl. Instrum. Meth. IN 506, 250–303 (2003).

    ADS CAS Google Scholar

  • 32.

    Dicke, R. The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instrum. 17, 268-275 (1946).

    ADS CAS PubMed PubMed Central Google Scholar

  • 33.

    Aguilar-Arevalo, A. et al. Find low mass WIMPs in a 0.6 kg exposure day of the DAMIC experiment at SNOLAB. Phys. Rev. D 94, 082006 (2016).

    ADS Google Scholar

  • 34.

    Agnese, R. et al. Project sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 95, 082002 (2017).

    ADS Google Scholar

  • 35.

    Alduino, C. et al. Initial results of CUORE: a search for violation of lepton number via 0no decay of 130Te. Phys. Pastor Lett. 120, 132501 (2018).

    ADS CAS Google Scholar

  • 36.

    Agostini, M. et al. Improved limit on neutrino-free double decay of 76Issued GERDA phase II. Phys. Pastor Lett. 120, 132503 (2018).

    ADS CAS Google Scholar

  • 37.

    Gando, A. et al. Look for Majorana neutrinos in the inverted mass hierarchy region with KamLAND-Zen. Phys. Pastor Lett. 117, 082503 (2016).

    ADS CAS Google Scholar

  • 38.

    Aalseth, CE et al. Look for neutrino double decay in 76Go with the demonstrator Majorana. Phys. Pastor Lett. 120, 132502 (2018).

    ADS CAS Google Scholar

  • 39.

    Albert, JB et al. Look for neutrino-free double-beta decay with the upgraded EXO-200 detector. Phys. Pastor Lett. 120, 072701 (2018).

    ADS CAS Google Scholar

  • 40.

    Gustavsson, S. et al. Relaxation suppression of relaxation in superconducting qubits by quasiparticle pumps. Science 354, 1573-1577 (2016).

    ADS CAS Google Scholar

  • 41.

    Wallraff, A. et al. Unit visibility approximated for control of a superconducting qubit with dispersive reading. Phys. Pastor Lett. 95, 060501 (2005).

    ADS CAS Google Scholar

  • 42.

    Macklin, C. et al. An almost quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    ADS CAS Google Scholar

  • 43.

    Yan, F. et al. The flux qubit revisited to improve coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • 44.

    Tanabashi, M. et al. Review of Particle Physics. Phys. Rev. D 98, 030001 (2018).

    ADS Google Scholar

  • 45.

    Hagmann, C., Lange, D. & Wright, D. Cosmic-ray shower generator (CRY) for transport codes of Monte Carlo. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 1143–1146 (2007).

    Google Scholar

  • 46.

    Mangiafico, SS Summary and Analysis of Evaluation of Extension Program in R (Rutgers Cooperative Extension, 2016).