Immune-evasive human islet-like organoids improve diabetes


  • 1

    Yoshihara, E. et al. ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive ß cells. Cell Metab. 23, 622–634 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 2

    Hrvatin, S. et al. Differentiated human stem cells resemble fetal, non-adult, ß cells. Proc. Natl Acad. Sci. United States of America 111, 3038–3043 (2014).

    ADS CAS PubMed Google Scholar

  • 3

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells is derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS PubMed Google Scholar

  • 4.

    Pagliuca, FW et al. Generation of functional human pancreatic β cells in vitro. Sel 159, 428–439 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 5

    Kieffer, TJ Concludes on mass production of moderate human beta cells. Cell Stem Cell 18, 699–702 (2016).

    CAS PubMed Google Scholar

  • 6

    Liu, JS & Hebrok, M. All mixed: roles defined for β-cell subtypes in mature islands. Genes Dev. 31, 228–240 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 7

    Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ transplant. Nature 499, 481–484 (2013).

    ADS CAS PubMed Google Scholar

  • 8

    Asai, A. et al. Paracrine signals regulate human liver organoid maturation of induced pluripotent stem cells. Development 144, 1056–1064 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 9.

    Bader, E. et al. Identification of proliferative and moderate ß cells in the islands of Langerhans. Nature 535, 430–434 (2016).

    ADS CAS PubMed Google Scholar

  • 10

    van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    PubMed PubMed Central Google Scholar

  • 11.

    Blum, B. et al. Functional beta-cell maturation is marked by an elevated glucose threshold and by expression of urocortin 3. Nat. Biotechnol. 30, 261–264 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 12.

    van der Meulen, T. et al. Urocortin 3 targets moderate human primary and embryonic stem cell-derived pancreatic alpha and beta cells. PLOS ONE 7, e52181 (2012).

    ADS PubMed PubMed Central Google Scholar

  • 13.

    Prentki, M., Matschinsky, FM & Madiraju, SR Metabolic signal in fuel-induced insulin secretion. Cell Metab. 18, 162–185 (2013).

    CAS PubMed Google Scholar

  • 14.

    Huang, SM et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signal. Nature 461, 614–620 (2009).

    ADS CAS PubMed Google Scholar

  • 15.

    Baas, M. et al. TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T-cell anergy in transplant tolerance. eLife 5, e08133 (2016).

    PubMed PubMed Central Google Scholar

  • 16.

    Martinov, T., Spanier, JA, Pauken, KE & Fife, BT PD-1 path-mediated regulation of island-specific CD4+ T-cell subsets in autoimmune diabetes. Immunoendocrinology 3, e1164 (2016).

    PubMed Google Scholar

  • 17.

    Keir, ME et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    CAS PubMed PubMed Central Google Scholar

  • 18.

    Ansari, MJ et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in non-obese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    CAS PubMed PubMed Central Google Scholar

  • 19.

    Ma, D. et al. PD-L1 deficiency within islands reduces allograft survival in mice. PLOS ONE 11, e0152087 (2016).

    PubMed PubMed Central Google Scholar

  • 20.

    Rui, J. et al. β Cells that develop resistance to immunological attack upon progression of autoimmune diabetes in NOD mice. Cell Metab. 25, 727–738 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 21.

    Wang, CJ et al. Protective role of programmed death 1 ligand 1 (PD-L1) in non-obese diabetic mice: the paradox in transgenic models. Diabetes 57, 1861–1869 (2008).

    CAS PubMed PubMed Central Google Scholar

  • 22.

    Colli, ML et al. PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferon-α and via IRF1 induction. eBioMedicine 36, 367–375 (2018).

    PubMed PubMed Central Google Scholar

  • 23.

    Osum, KC et al. Interferon gamma drives programmed death ligand 1 expression on island β cells to limit T cell function during autoimmune diabetes. Sci. Rep. 8, 8295 (2018).

    ADS PubMed PubMed Central Google Scholar

  • 24.

    Eizirik, DL & Mandrup-Poulsen, T. A choice for death – the signal transduction of immune-mediated beta-cell apoptosis. Diabetology 44, 2115–2133 (2001).

    CAS PubMed Google Scholar

  • 25

    Russ, HA et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 26.

    Nair, GG et al. The inclusion of endocrine cell clustering in culture promotes maturation of human stem cell-derived β-cells. Nat. Cell Biol. 21, 263–274 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 27.

    Sneddon, JB et al. Stem Cell Therapies for Treating Diabetes: Advances and Remaining Challenges. Cell Stem Cell 22, 810–823 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 28.

    Zhou, Q. & Melton, DA Pancreatic Rejuvenation. Nature 557, 351–358 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • 29.

    Turner, M. et al. Following the development of a worldwide induced pluripotent library for stem cells. Cell Stem Cell 13, 382–384 (2013).

    CAS PubMed Google Scholar

  • 30.

    Morizane, A. et al. MHC agreement improves scripting of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    ADS PubMed PubMed Central Google Scholar

  • 31.

    Wei, Z. et al. Vitamin D metabolizes BAF complexes to protect β-cells. Nat. Commun. 173, 1135–1149 (2018).

    CAS Google Scholar

  • 32.

    Yoshihara, E. et al. Disruption of TBP-2 reduces insulin sensitivity and secretion without affecting obesity. Nat. Commun. 1, 127 (2010).

    ADS PubMed PubMed Central Google Scholar

  • 33.

    Buenrostro, JD, Wu, B., Chang, HY & Greenleaf, WJ ATAC-seq: a method for analyzing chromatin accessibility genome wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Google Scholar

  • 34.

    Heinz, S. et al. Simple combinations of line-defined transcription factors prime cis-regulatory elements required for macrophages and B-cell identities. Mol. Sel 38, 576–589 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 35.

    Dobin, A. et al. STAR: ultra-fast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS Google Scholar

  • 36.

    Trapnell, C. et al. Differential analysis of gene regulation by transcript resolution using RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS PubMed Google Scholar

  • 37.

    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of new transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325–2329 (2011).

    CAS PubMed Google Scholar

  • 38

    van Dijk, D. et al. Gene interactions recover data from a single cell with data diffusion. Sel 174, 716–729 (2018).

    PubMed PubMed Central Google Scholar

  • 39.

    Macosko, EZ et al. Highly parallel genome-wide expression profiling individual cells with nanoliter droplets. Sel 161, 1202–1214 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 40

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integration of single-cell transcriptomic data across different conditions, technologies, and types. Nat. Biotechnol. 36, 411–420 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 41

    Huang da. W. et al. Extract biological significance from large gene lists with DAVID. Curr. Protoc. Bioinformatics Ch. 13, https://doi.org/10.1002/0471250953.bi1311s27 (2009).

  • 42

    Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015).

    CAS PubMed Google Scholar