A subradiant optical mirror consisting of a single structured atomic layer


  • one)

    Chang, DE, Douglas, JS, González-Tudela, A., Hung, C.-L. & Kimble, HJ Quantum matter built from nanoscopic networks of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    ADS MathSciNet CAS Google Scholar

  • two)

    Porras, D. and Cirac, JI Collective generation of quantum states of light by entangled atoms. Phys. Rev. A 78, 053816 (2008).

    ADS Google Scholar

  • 3)

    Jenkins, SD and Ruostekoski, J. Controlled manipulation of light through the cooperative response of atoms in an optical network. Phys. Rev. A 86, 031602 (2012).

    ADS Google Scholar

  • 4)

    Jenkins, S. and Ruostekoski, J. Metamaterial transparency induced by cooperative electromagnetic interactions. Phys. Rev. Lett. 111147401 (2013).

    ADS Google Scholar

  • 5)

    González-Tudela, A., Hung, CL, Chang, DE, Cirac, JI and Kimble, HJ Lower wavelength vacuum networks and atom-atom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320-325 (2015).

    ADS Google Scholar

  • 6)

    Douglas, JS et al. Quantum models of many bodies with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    ADS CAS Google Scholar

  • 7)

    Facchinetti, G., Jenkins, SD and Ruostekoski, J. Light storage with subradiant correlations in atom matrices. Phys. Rev. Lett. 117243601 (2016).

    ADS CAS Google Scholar

  • 8)

    Bettles, RJ, Gardiner, SA and Adams, CS Enhanced optical cross section by collective coupling of atomic dipoles in a 2D matrix. Phys. Rev. Lett. 116, 103602 (2016).

    ADS Google Scholar

  • 9)

    Shahmoon, E., Wild, DS, Lukin, MD, and Yelin, SF cooperative resonances in light scattering of two-dimensional atomic matrices. Phys. Rev. Lett. 118113601 (2017).

    ADS Google Scholar

  • 10)

    Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, HJ & Chang, DE Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic matrices. Phys. Rev. X 7 7, 031024 (2017).

    Academic google

  • eleven)

    Noh, C. and Angelakis, DG Quantum simulations and physics of many bodies with light. Rep. Prog. Phys. 80, 016401 (2017).

    ADS Google Scholar

  • 12)

    Lehmberg, RH Radiation of a northAtom system. I. General formalism. Phys. Rev. A two, 883–888 (1970).

    ADS Google Scholar

  • 13)

    Dicke, coherence of HR in spontaneous radiation processes. Phys. Rdo. 93, 99-110 (1954).

    CAS MATH Google Scholar ADS

  • 14)

    Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Reps. 93, 301-396 (1982).

    ADS CAS Google Scholar

  • fifteen.

    Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. and Imamoğlu, A. Making a narrow bandwidth atomically thin and electrically tunable mirror using MoSe monolayertwo. Phys. Rev. Lett. 120, 037401 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • sixteen.

    Scuri, G. et al. High MoSe monolayer excitonic reflectivitytwo encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    ADS CAS Google Scholar

  • 17)

    Asenjo-García, A., Hood, JD, Chang, DE and Kimble, HJ Atom-light interactions in quasi-one-dimensional nanostructures: a perspective of Green’s function. Phys. Rev. A 95, 033818 (2017).

    ADS Google Scholar

  • 18)

    Chomaz, L., Corman, L., Yefsah, T., Desbuquois, R. and Dalibard, J. Absorption images of a quasi-two-dimensional gas: a multiple dispersion analysis. New J. Phys. 14, 055001 (2012).

    ADS Google Scholar

  • 19)

    Jenkins, SD, Ruostekoski, J., Papasimakis, N., Savo, S. and Zheludev, NI Subradiant excitations of many bodies in metamaterial matrices: experiment and theory. Phys. Rev. Lett. 119, 053901 (2017).

    ADS PubMed PubMed Central Google Scholar

  • twenty)

    van Loo, AF et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494-1496 (2013).

    ADS Google Scholar

  • twenty-one)

    Mirhosseini, M. et al. Quantum electrodynamic cavity with atomic mirrors. Nature 569, 692-697 (2019).

    ADS CAS Google Scholar

  • 22)

    DeVoe, RG & Brewer, RG Observation of the superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049-2052 (1996).

    ADS CAS Google Scholar

  • 2. 3)

    Guerin, W., Araújo, MO and Kaiser, R. Subradiance in a great cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016).

    ADS Google Scholar

  • 24)

    Solano, P., Barberis-Blostein, P., Fatemi, FK, Orozco, LA and Rolston, SL Super radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).

    ADS CAS PubMed PubMed Central Google Scholar

  • 25)

    Bloch, I., Dalibard, J. and Zwerger, W. Many-body physics with ultra-cold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS CAS Google Scholar

  • 26)

    Bakr, WS, Gillen, JI, Peng, A., Fölling, S. and Greiner, M. A quantum gas microscope to detect individual atoms in a Hubbard-regime optical network. Nature 462, 74-77 (2009).

    ADS CAS Google Scholar

  • 27)

    Sherson, JF et al. Fluorescence images of a single resolved atom from a Mott atomic isolator. Nature 467, 68-72 (2010).

    ADS CAS Google Scholar

  • 28)

    Weitenberg, C. et al. Single Turn Addressing on a Mott Atomic Isolator. Nature 471, 319–324 (2011).

    ADS CAS Google Scholar

  • 29)

    Meir, Z., Schwartz, O., Shahmoon, E., Oron, D. and Ozeri, R. Cooperative Lamb shift in a mesoscopic atomic matrix. Phys. Rev. Lett. 113, 193002 (2014).

    ADS CAS Google Scholar

  • 30)

    Preiss, PM et al. Quantum paths strongly correlated in optical networks. Science 347, 1229-1233 (2015).

    ANNOUNCEMENTS MathSciNet CAS MATH Google Scholar

  • 31)

    Ye, J., Kimble, HJ & Katori, H. Quantum state engineering and precision metrology using state insensitive light traps. Science 320, 1734-1738 (2008).

    ADS CAS Google Scholar

  • 32)

    Perczel, J. et al. Topological quantum optics in two-dimensional atomic matrices. Phys. Rev. Lett. 119, 023603 (2017).

    ADS CAS Google Scholar

  • 33)

    Bettles, RJ, Minář, J., Adams, CS, Lesanovsky, I. and Olmos, B. Topological properties of a dense atomic network gas. Phys. Rev. A 96, 041603 (2017).

    ADS Google Scholar

  • 3. 4)

    Manzoni, MT et al. Optimization of the fidelity of photon storage in ordered atomic matrices. New J. Phys. twenty, 083048 (2018).

    ADS Google Scholar

  • 35)

    Scully, MO Single-photon subradiance: spontaneous emission quantum control and ultrafast reading. Phys. Rev. Lett. 115243602 (2015).

    ADS Google Scholar

  • 36)

    Guimond, P.-O., Grankin, A., Vasilyev, DV, Vermersch, B. and Zoller, P. Subradiant Bell testifies on distant atomic sets. Phys. Rev. Lett. 122, 093601 (2019).

    ADS CAS Google Scholar

  • 37)

    Černotík, OV, Dantan, A. & Genes, C. Quantum cavity electrodynamics with frequency dependent reflectors. Phys. Rev. Lett. 122243601 (2019).

    ADS PubMed PubMed Central Google Scholar

  • 38)

    Shahmoon, E., Lukin, MD, and Yelin, SF Chapter One: Collective Movement of an Array of Atoms under Laser Illumination. Adv. Atom. Mol. To opt. Phys. 68, 1-38 (2019).

    Academic google

  • 39)

    Shahmoon, E., Lukin, MD, and Yelin, SF Quantum Optomechanics of a Two-Dimensional Atomic Matrix. Previously print at https://arxiv.org/abs/1810.01052 (2018).

  • 40)

    Bekenstein, R. et al. Quantum meta-surfaces with atom matrices. Nat. Phys. sixteen676–681 (2020).

    CAS Google Scholar

  • 41)

    He, Y. et al. Geometric control of collective spontaneous emission. Previously print at https://arxiv.org/abs/1910.02289 (2019).

  • 42)

    Henriet, L., Douglas, JS, Chang, DE and Albrecht, A. Critical dynamics of the open system in a one-dimensional optical lattice clock. Phys. Rev. A 99, 023802 (2019).

    ADS CAS Google Scholar

  • 43)

    Zhang, Y.-X., Yu, C. and Mølmer, K. Dimer-excited states linked to subradiants of emitting chains coupled to a one-dimensional waveguide. Phys. Rev. Res. two, 013173 (2020).

    CAS Google Scholar