Scientists collaborate on the development of commercial fusion energy


Garrett Kramer Spark Fusion Reactor

PPPL physicist Garrett Kramer with a fictional image of a spark fusion reactor. Credit: Collage and Kramer photo by Elle Starkman / PPPL Communication of Communications. Spark image courtesy of Commonwealth Fusion Systems

U.S. Department of Energy (DOE) Princeton Plasma Physics Laboratory (PPPL) Is collaborating with the private industry on cutting edge fusion research with the goal of achieving commercial fusion energy. This work supports the development efforts of high-performance fusion grade plasma, enabled through a public-private DOE grant program. One such project is working in coordination with PPPL MITThe Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems, a start-up from MIT, are developing a talkmac fusion device called the Spark.

The goal of the project, SPRC. Is to predict the leakage of fast “alpha” particles produced during the fusion reaction, given the size of the superconducting magnet and the potential false connections which Plasma. These particles can form large amounts of self-heating or “burning plasma” that fuels fusion reactions. The development of burning plasma is a major scientific goal for fusion energy research. However, leakage of alpha particles can slow down or stop the production of fusion energy rays and damage the interior of the spark facility.

New superconducting magnets

The main features of a spark machine include its compact size and powerful magnetic fields, the ability to operate on super high fields by the ability of a super superconducting magnet and the stress from current superconducting magnets. These features, as described in recent releases by the Spark team, will enable the design and construction of smaller and less expensive fusion facilities – assuming that fast alpha particles created in fusion reactions can contain enough time to keep plasma warm.

“Our research suggests they may be,” said Garrett Kramer, a physicist at PPPL, who participates in the project through the Dewey Innovation Network for Fusion Energy (InfusE) program. The two-year-old program, which serves as the deputy director of PPPL’s ​​physicist Ahmed Diallo, aims to accelerate the private sector development of fusion energy fields through partnerships with national laboratories.

Well bound

“We’ve found that alpha particles are really well-limited in spark design,” Kramer said. Plasma Physics Journal Report that findings. He worked closely with lead author Steven Scott, a consultant on Commonwealth Fusion Systems and a former longtime physicist at PPPL.

Kramer used the spiral computer code developed in PPPL to test the limits of Kramer particles. The code, which mimics an avy wavy pattern or ripple, shows good captivity and lack of damage to spark walls in a magnetic field that can escape fast particles, Kramer said. In addition, he added, “The Spinal Code agrees well with Finland’s Escote Code. While the two codes are completely different, the results were the same. ”

These findings delight Scott. “I am delighted to see the computational validity of our understanding of wave-induced damage,” he said. “I studied this experimentally in the early 1980s for my doctoral dissertation.”

Fusion reactions combine light elements in the form of plasma – a free, electron and hot, charged state of matter composed of atomic nuclei or ions, comprising 99 percent of the visible universe – to produce large amounts of gene radiation. Scientists around the world are looking to create fusion as a combination of virtually unlimited power to generate electricity.

Key Guide

Kramer and colleagues have noted that false proof of a spark magnet will increase the corrugated-induced damage of fusion particles resulting in the ability to strike walls. Their calculations about how well the magnets should be aligned to avoid excessive damage and wall damage should provide key guidance to the spark engineering team. Properly aligned magnets will enable the study of plasma self-heating for the first time and the development of improved techniques for plasma control in future fusion power plants.

Reference: S.D. Scott, G.J. Kramer, E.A. Tolman, a. Sneaker, j. Varge, k. Sarkim ä Key, J.C. Wright and p. “Fast-Ion Physics in Spark” by Rodriguez-Fernandez, 29 September 2020 Plasma Physics Journal.
DOI: 10.1017 / S0022377820001087

The basis for this research comes from Commonwealth Fusion Systems. Support for Kramer comes from the DOE Office Fees of Science Infuse program. Contributors to the project include physicists from PSFC; Alto University in Espoo, Finland; And Research-intensive The University of Gothenburg, Sweden was founded in 1829 after a donation from William Chalmers, director of the Sweden East India Company. It focuses on technology, science, architecture and shipping. “Class =” glossarilink “> Chalmers University of Technology In Gothenburg, Sweden.