The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes



[ad_1]

  • one)

    Prüfer, K. et al. A high-coverage Neanderthal genome from the Vindija cave in Croatia. Science 358, 655-658 (2017).

  • two)

    Fu, Q. et al. Genome sequence of a 45,000 year old modern human from western Siberia. Nature 514, 445–449 (2014).

  • 3)

    Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. and Akey, J. M. Analysis of human sequence data reveals two pulses of Denisovan archaic mixture. Cell 173, 53-61 (2018).

  • 4)

    Wall, J. D. et al. Higher levels of Neanderthal descent in East Asians than in Europeans. Genetics 194, 199-209 (2013).

  • 5)

    Kim, B. Y. and Lohmueller, K. E. Population selection and reduced size cannot explain greater amounts of Neanderthal ancestry in East Asia than in European human populations. A.M. J. Hum. Genet. 96, 454-461 (2015).

  • 6)

    Vernot, B. and Akey, J. M. Complex history of mixing between modern humans and Neanderthals. A.M. J. Hum. Genet. 96448-453 (2015).

  • 7)

    Villanea, F. A. and Schraiber, J. G. Multiple crossbreeding episodes between Neanderthals and modern humans. Nat. Ecol. Evol. 3, 39–44 (2019).

  • 8)

    Dannemann, M. and Kelso, J. The contribution of Neanderthals to phenotypic variation in modern humans. A.M. J. Hum. Genet. 101, 578–589 (2017).

  • 9)

    Gittelman, R. M. et al. The mixture of archaic hominids facilitated adaptation to environments outside of Africa. Curr. Biol. 26, 3375–3382 (2016).

  • 10)

    Gregory, M. D. et al. Neanderthal-derived genetic variation shapes the modern human skull and brain. Sci. Reps. 7 76308 (2017).

  • eleven)

    McCoy, R. C., Wakefield, J. and Akey, J. M. Impacts of Neanderthal-introgressed sequences in the human gene expression landscape. Cell 168, 916–927 (2017).

  • 12)

    Dannemann, M., Prüfer, K. and Kelso, J. Functional implications of Neanderthal introgression in modern humans. Biol Genome. 18 years61 (2017).

  • 13)

    Simonti, C. N. et al. The phenotypic legacy of the mix between modern humans and Neanderthals. Science 351, 737–741 (2016).

  • 14)

    Vernot, B. and Akey, J. M. Reviving surviving Neanderthal lineages of modern human genomes. Science 343, 1017-1021 (2014).

  • fifteen.

    Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in modern humans. Nature 507, 354–357 (2014).

  • sixteen.

    Steinrücken, M., Spence, J. P., Kamm, J. A., Wieczorek, E. & Song, Y. S. Model-based detection and analysis of introgressed Neanderthal ancestry in modern humans. Mol. Ecol. 27, 3873–3888 (2018).

  • 17)

    Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

  • 18)

    Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43-49 (2014).

  • 19)

    Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561113-116 (2018).

  • twenty)

    Skov, L. et al. Detection of archaic introgression using an unmixed external group. PLoS Genet. 14, e1007641 (2018).

  • twenty-one)

    Kong, A. et al. Detection of sharing by descent, long-range phases and imputation of haplotypes. Nat. Gineta. 40, 1068-1075 (2008).

  • 22)

    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68-74 (2015).

  • 2. 3)

    Sankararaman, S., Mallick, S., Patterson, N. and Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in today’s humans. Curr. Biol. 26, 1241-1247 (2016).

  • 24)

    Vernot, B. et al. Excavating the Neanderthal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 ​​(2016).

  • 25)

    Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656–660 (2018).

  • 26)

    Harris, K. and Pritchard, J. K. Rapid evolution of the human mutation spectrum. elife 6 6, e24284 (2017).

  • 27)

    Moorjani, P., Amorim, C. E. G., Arndt, P. F. and Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. United States 113, 10607-10612 (2016).

  • 28)

    Jónsson, H. et al. Influence of parents on de novo human germline mutations in 1,548 Iceland trios Nature 549, 519-522 (2017).

  • 29)

    Harris, K. and Nielsen, R. The genetic cost of Neanderthal introgression. Genetics 203, 881–891 (2016).

  • 30)

    Juric, I., Aeschbacher, S. and Coop, G. The force of selection against Neanderthal introgression. PLoS Genet. 12, e1006340 (2016).

  • 31)

    Castellano, S. et al. Coding variation patterns in the complete exomes of three Neanderthals. Proc. Natl Acad. Sci. United States 1116666-6671 (2014).

  • 32)

    McLaren, W. et al. The variant effect predictor Ensembl. Biol Genome. 17122 (2016).

  • 33)

    Sveinbjornsson, G. et al. Weighting sequence variants based on their annotation increase the power of genome-wide association studies. Nat. Gineta. 48, 314–317 (2016).

  • 3. 4)

    Kote-Jarai, Z. et al. Identification of a new variant of susceptibility to prostate cancer in the KLK3 gene transcription Hum. Genet. 129 129687-694 (2011).

  • 35)

    Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652-656 (2018).

  • 36)

    Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T. and Schierup, M. H. Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat. Ecol. Evol. 3, 286–292 (2019).

  • [ad_2]